With more than a few stamps on its passport, NASA's Aquarius instrument on the Argentinian Satélite de Aplicaciones Científicas (SAC)-D spacecraft will soon embark on its space mission to "taste" Earth's salty ocean.
After a journey of development and assembly through NASA facilities; a technology center in Bariloche, Argentina; and testing chambers in Brazil, the Aquarius instrument, set to measure the ocean's surface salinity, recently made the trip from São José dos Campos, Brazil, to California's Vandenberg Air Force Base for final integration and testing before its scheduled launch on June 9.
Aquarius will map the concentration of dissolved salt at the ocean's surface, information that scientists will use to study the ocean's role in the global water cycle and how this is linked to ocean currents and climate. Sea surface temperature has been monitored by satellites for decades, but it is both temperature and salinity that determine the density of the surface waters of the ocean. Aquarius will provide fundamentally new ocean surface salinity data to give scientists a better understanding of the density-driven circulation; how it is tied to changes in rainfall and evaporation, or the melting and freezing of ice; and its effect on climate variability.
"The ocean is essentially Earth's thermostat. It stores most of the heat, and what we need to understand is how do changes in salinity affect the 3-D circulation of the ocean," said Gene Feldman, Aquarius Ground System and Mission Operations manager at NASA's Goddard Space Flight Center, Greenbelt, Md.
The development of the Aquarius mission began more than 10 years ago as a joint effort between Goddard and NASA's Jet Propulsion Laboratory in Pasadena, Calif. In 2008, Goddard engineers completed the Aquarius microwave radiometer instrument, which is the key component for measuring salinity from space.
"The radiometer is the most accurate and stable radiometer built for sensing of Earth from space. It's a one-of-a-kind instrument," said Shannon Rodriguez-Sanabria, a microwave communications specialist at Goddard.
JPL built Aquarius' scatterometer instrument, a microwave radar sensor that scans the ocean's surface to measure the effect wind speed has on the radiometer measurements. The radiometer and scatterometer instruments, along with a 2.5-by-3-meter (8.25-by-10-foot) elliptical antenna reflector and many other systems, have been integrated together at JPL to form the complete Aquarius instrument. Other instruments aboard the SAC-D spacecraft are contributions from Argentina, France, Canada and Italy.
In June 2009, Aquarius was flown via a U.S. Air Force cargo jet to San Carlos de Bariloche, Argentina, a destination known for its natural scenery of blue lakes and verdant mountains, to be integrated with Argentina's SAC-D spacecraft. A year later, the fully assembled spacecraft and all the instruments now referred to as the "Aquarius/SAC-D Observatory" were shipped to Brazil. There, engineers began a nine-month campaign of alignment, electromagnetic, vibration, and thermal vacuum testing to ensure it will survive the rigors of launch and space.
JPL will manage the Aquarius mission through Aquarius' commissioning phase, scheduled to last 45 days after launch. Goddard will then manage the Aquarius instrument operations during the mission. Argentina's Comisión Nacional de Actividades Espaciales (CONAE) will operate the spacecraft and download all of the data collected by Aquarius several times per day. Goddard is responsible for producing the Aquarius science data products. JPL will manage the data archive and distribution to scientists worldwide.
Aquarius will collect data continuously as it flies in a near-polar orbit and circles Earth 14 to 15 times each day. The field of view of the instrument is 390 kilometers (242 miles) wide, and it will provide a global map every seven days. The data will be compiled to generate more accurate monthly averages during the mission, which is designed to last a minimum of three years.
For more information visit http://www.jpl.nasa.gov/news/news.cfm?release=2011-109
After a journey of development and assembly through NASA facilities; a technology center in Bariloche, Argentina; and testing chambers in Brazil, the Aquarius instrument, set to measure the ocean's surface salinity, recently made the trip from São José dos Campos, Brazil, to California's Vandenberg Air Force Base for final integration and testing before its scheduled launch on June 9.
Aquarius will map the concentration of dissolved salt at the ocean's surface, information that scientists will use to study the ocean's role in the global water cycle and how this is linked to ocean currents and climate. Sea surface temperature has been monitored by satellites for decades, but it is both temperature and salinity that determine the density of the surface waters of the ocean. Aquarius will provide fundamentally new ocean surface salinity data to give scientists a better understanding of the density-driven circulation; how it is tied to changes in rainfall and evaporation, or the melting and freezing of ice; and its effect on climate variability.
"The ocean is essentially Earth's thermostat. It stores most of the heat, and what we need to understand is how do changes in salinity affect the 3-D circulation of the ocean," said Gene Feldman, Aquarius Ground System and Mission Operations manager at NASA's Goddard Space Flight Center, Greenbelt, Md.
The development of the Aquarius mission began more than 10 years ago as a joint effort between Goddard and NASA's Jet Propulsion Laboratory in Pasadena, Calif. In 2008, Goddard engineers completed the Aquarius microwave radiometer instrument, which is the key component for measuring salinity from space.
"The radiometer is the most accurate and stable radiometer built for sensing of Earth from space. It's a one-of-a-kind instrument," said Shannon Rodriguez-Sanabria, a microwave communications specialist at Goddard.
JPL built Aquarius' scatterometer instrument, a microwave radar sensor that scans the ocean's surface to measure the effect wind speed has on the radiometer measurements. The radiometer and scatterometer instruments, along with a 2.5-by-3-meter (8.25-by-10-foot) elliptical antenna reflector and many other systems, have been integrated together at JPL to form the complete Aquarius instrument. Other instruments aboard the SAC-D spacecraft are contributions from Argentina, France, Canada and Italy.
In June 2009, Aquarius was flown via a U.S. Air Force cargo jet to San Carlos de Bariloche, Argentina, a destination known for its natural scenery of blue lakes and verdant mountains, to be integrated with Argentina's SAC-D spacecraft. A year later, the fully assembled spacecraft and all the instruments now referred to as the "Aquarius/SAC-D Observatory" were shipped to Brazil. There, engineers began a nine-month campaign of alignment, electromagnetic, vibration, and thermal vacuum testing to ensure it will survive the rigors of launch and space.
JPL will manage the Aquarius mission through Aquarius' commissioning phase, scheduled to last 45 days after launch. Goddard will then manage the Aquarius instrument operations during the mission. Argentina's Comisión Nacional de Actividades Espaciales (CONAE) will operate the spacecraft and download all of the data collected by Aquarius several times per day. Goddard is responsible for producing the Aquarius science data products. JPL will manage the data archive and distribution to scientists worldwide.
Aquarius will collect data continuously as it flies in a near-polar orbit and circles Earth 14 to 15 times each day. The field of view of the instrument is 390 kilometers (242 miles) wide, and it will provide a global map every seven days. The data will be compiled to generate more accurate monthly averages during the mission, which is designed to last a minimum of three years.
For more information visit http://www.jpl.nasa.gov/news/news.cfm?release=2011-109
Wednesday, April 6, 2011
//
Labels:
NASA News
//
0
comments
//
0 comments to "For NASA's Aquarius, Quest for Salt a Global Endeavor"
Popular Posts
-
Even though there are many advancement in technology, keeping foods fresher in space for a long period has been impossible. Research has b...
-
Though the sun's brightness was once thought to be constant, NASA has launched a series of satellite instruments that have helpe...
-
NASA technologists will get a opportunity next summer time to experience the good old days when Organization technical engineers would conn...
-
NASA is providing up to $20 million over the next five years to support a national program to inspire student interest in science, technolo...
-
X-24B Precision Landings Proved That Shuttle Could Land Unpowered NASA research pilot John Manke worked through his prelaunch checklist wh...
-
The mars rock touches the NASA curiosity this time it touches the more different from before Tasks. The mars rock is looks like some odd...
-
Leaner, greener flying machines for the year 2025 are on the drawing boards of three industry teams under contract to the NASA Aeronautics ...
-
Images from NASA's Wide-field Infrared Survey Explorer (WISE) reveal an old star in the throes of a fiery outburst, spraying the cosm...
-
The argument that the moon is a dry, desolate place no longer holds water. Secrets the moon has been holding, for perhaps billions of years,...